The Coset Poset and Probabilistic Zeta Function of a Finite Group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Coset Poset and Probabilistic Zeta Function of a Finite Group

For a finite group G and a non-negative integer s, let P(G,s) be the probability that a randomly chosen s-tuple generates G. Philip Hall gave an explicit formula for P(G,s), exhibiting the latter as a finite Dirichlet series. One can therefore speak of P(G,s) for an arbitrary complex number s. The reciprocal of this function of s is called the zeta function of G. The present work arose from an ...

متن کامل

Shelling the coset poset

It is shown that the coset lattice of a finite group has shellable order complex if and only if the group is complemented. Furthermore, the coset lattice is shown to have a Cohen–Macaulay order complex in exactly the same conditions. The group theoretical tools used are relatively elementary, and avoid the classification of finite simple groups and of minimal finite simple groups. © 2006 Elsevi...

متن کامل

The Probabilistic Zeta Function

This paper is a summary of results on the PG(s) function, which is the reciprocal of the probabilistic zeta function for finite groups. This function gives the probability that s randomly chosen elements generate a group G, and information about the structure of the group G is embedded in it.

متن کامل

Covering a Finite Group by the Conjugates of a Coset

We study pairs (G,A) where G is a finite group and A < G is maximal, satisfying ⋃ g∈G (Ax) = G − {1G} for all x ∈ G − A. We prove that this condition defines a class of permutation groups, denoted CCI, which is a subclass of the class of primitive permutation groups. We prove that CCI contains the class of 2-transitive groups. We also prove that groups in CCI are either affi ne or almost simple...

متن کامل

a finiteness condition on the coefficients of the probabilistic zeta function

we discuss whether finiteness properties of a profinite group $g$ can be deduced from the coefficients of the probabilisticzeta function $p_g(s)$. in particular we prove that if $p_g(s)$ is rational and all but finitely many non abelian composition factors of $g$ are isomorphic to $psl(2,p)$ for some prime $p$, then $g$ contains only finitely many maximal subgroups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2000

ISSN: 0021-8693

DOI: 10.1006/jabr.1999.8221